$\operatorname{cs} A^{4}$ MANUAL

Cross Section Analyzer is a tool for automatic creation and calculation of various cross sectional design concepts.

Cross sections are generated basing on user-defined design variables. The software enables the definition of material, thickness and length design variables.

One of the greatest advantages of the Cross Section Analyzer is the speed of calculations.
Now it is possible to calculate thousands of design variants in seconds!
Search for the optimal solution with the usage of results filtering functionality. Set the range of acceptable results values and find the most suitable cross-sectional designs.

CSA - MANUAL

Cross Section Analyzer - Main View 3

- Explorer Window 4
- Cross Section's Browser 6
- 2D view - Cross Section in Macro Element Method 8
- Properties Window 9
> Create New Analytical Project 10
> Open Existing Analytical Project 12
> Import Materials From Other Solutions 13
> Define Set Of Design Variables 16
- Material Design Variable 17
- Thickness Design Variable 19
- Length Design Variable 21
- Move Point Design Variable 25
- Create New Analytical Combination 30
> Calculate 32
> Results Report 34
- Cross Sections Zone 35
- Combinations Zone 36
- Parameters Zone 37
- Filtering 38
- List of Results 39
- "Radar" window 42
- Export - Results 45
> Export - Cross Sections 46

CSA main view is divided into 3 main areas: Explorer window, Cross section 2D view and Properties Window.

Explorer window

The Explorer window includes the basic cross section, list of imported materials, all defined design variables and results reports. All elements of a CSA solution are grouped in appropriate folders in the Explorer tree.

Cross Section's Browser
In the cross section 2D view the geometry of an analyzed cross section is presented. It is equipped with the selection and area selection tools which enable the user to select specific elements of the cross section and assign them to chosen design variables.
Moreover, charts for axial response, bending response, torsion response etc. are available after clicking on an appropriate bookmark at the bottom of the 2D view window.

Properties window

In the Properties window the user can view properties of any selected object of the Analyzer's solution. Results of the basic cross section can be checked as well as detailed parameters of any plate or segment.
In case of materials, detailed characteristic of a selected material can be viewed
In case of a selected design variable the user can view, define and edit desired parameters.
Main Toolbar
Main toolbar located above the Explorer window guaranties easy access to main functionalities of the CSA.
Detailed description of CSA tools and functionalities will be given in later parts of this manual.

The Explorer tree enables easy access to all elements of an analytical project.
All objects can be found in appropriate expandable folders.

■ 욤 Analytical Project

\square Material Design Variables -Ma M-DV-3
\because CS 1: 1 - A-Pillar 6-Plate
\ldots CS 1: 1 - A-Pillar 7 - Plate
\ldots CS 0: 0 - Crashbox 0 - Plate

Thickness Design Variables圂..Th T-DV-2
\ldots CS 0: 0-Crashbox 4-Plate
\ldots CS 3: 3 - Rocker Panel 4 - Plate
\ldots CS 1: 1 - A-Pillar 6-Plate
\ldots CS 1: 1 - A-Pillar 7 - Plate
\square Length Design Variables

- Le L-DV-3
-M. CS 3: 3- Rocker Panel 16 - Plate -....M. 3 - Rocker Panel 15 - Point
- \rightarrow CS 0: 0-Crashbox 3-Plate
M..... M - Crashbox 7 - Point
$\square \square$ Move Points Design Variables -MP MP-DV-O
- CS 0:0-Crashbox 7 - Point
- CS 0: 0-Crashbox 4 - Point

Imported Cross Section

Double click on a Cross Section to open it in the Cross Section's Browser window.

Imported materials

Double click on a material to open the Material Editor window.
Detailed definition of a selected material can be viewed in the properties window.

Analytical Combination - set of design variables.

Within the "Analytical Combinations folder the user can find separate folders for each available design variable. All elements of a cross section assigned to a design variable will be listed in the explorer tree.

Material DV	Thickness DV
Length DV	Move Point DV

Results Report

At the vary bottom of the Explorer tree the Analyzer Report can be found.

Double click to open the report window in which results can be displayed and filtered.

* Calculate Analytical Project to display results!

Material Editor

Double click on a chosen material in the Explorer window to open the Material Editor window. In the Material Editor the stress-strain curve is displayed. Additionally, after selecting the appropriate bookmark, the strain rate characteristic can be displayed.

Detailed definition of a material can be viewed in the Properties window

```
■. Analytical Project
- CS 0: 0-Thin Walled Cross Section
\({ }^{1} 1\) CS 1: 1-Thin Walled Cross Section
\(=\) CS 2: 2-Crashbox
CS 3:3-A-Pillar
C CS 4:4-Rocker Panel
```


$-1 \leqslant$ Materials

```
Mild steel 325 6061-T6 aluminium
2024-T351aluminium
AISI 1006 Steel
AISI 4340 Steel
7039 aluminium
304 Stainless Stee
5056 aluminium
AISI 1045
Mild steel 460
Mild steel 250
Mild steel 260
```

自品 Analytical Combination Material Design Variables

MAIN VIEW - Cross Section's Browser

Double click on a Cross Section in the Explorer tree, to open it in the Cross Section's Browser window. In the cross section 2D view the geometry of the base cross section is displayed.
The window is equipped with selection tool - the user can easily select plates and points of the cross section, view their definition in the properties window and assign selected objects to a chosen design variable.

User can open multiple cross sections in browser

Each opened cross section is visible as separate tab. To switch to other cross section just click on its tab. To close cross section, click on the " X " in the upper right corner of the browser or right mouse click on tab that are to be closed and select Close button.

Several cross sections can be displayed simultaneously in the browser window in a vertical or horizontal way. To display several cross sections at once, right mouse click on a tab or drag and drop it. Then select whether the cross sections are to be displayed vertically or horizontally.

Area Selection

The user can select several plates and points of a cross section simultaneously by means of the area selection tool.
Please note that all selected plates will be marked in orange color, all selected points will be marked in red color.

Cross Section Editor toolbar

Each cross section editor contain its toolbar with Select, Rotate, Show Length, Show Thickness and Zoom to all tools.

To rotate the cross section enter the angle value and press enter button on the keyboard.
To recalculate rotated cross section select it in the explorer tree and click on the calculate button.

CS0:0-Thin Walled Cross Section \mid CS 1:1-Thin Walled Cross Section \mid

Accordingly, to the Macro Element Method (MEM) the VCS software enables the creation of a simplified cross section model build of plates and segments based on Points.

All Cross Sections created in MEM consist of :

- Points

- Plates - created by connecting two Points
- Segments - build of Plates
- Super Folding Elements
and possibly
- Connections

IMPORTANT NOTICE

Please note that a cross section purposed for analysis in the CSA needs to be defined with accordance to the Macro Element Method.
Incorrect or too dense discretization of a cross section can affect the overall results.

In the picture on the left an example of a Cross Section modelled in MEM can be seen. Please note that each segment has been marked in different color.

A Macro Element model is a simplified model, where details of the cross-sectional geometry should be neglected.

The problem of radius modelling at the Cross Section level is related to the definition of Super Folding Element (SFE) and corresponding modelling methodology (quite different then in FE programs). The energy absorption in corner area can be significantly increased only for radii that guarantee development of full plastic folds like in the case of circular or hexagonal column.

In the picture on the right, the comparison of a simplified MEM model (gray) and a typical model created in accordance with the FE methodology can be seen.

In the Properties window the user can view detailed definition of any selected object from a current CSA solution.

After selecting any object in the Explorer window all its properties will be automatically displayed.
In case of a cross section, the Properties window includes not only information about the geometry and assigned material but also detailed results*.

* More information available in "VCS - Cross Section Editor Manual".

\checkmark 0. Basic Properties		
	Material	2000121 (LS_DYNA)
	Thickness	1.1
\checkmark 1. Apperance		
	Color	\square 165. 165. 165
	Visible	True
\checkmark 2.Properties		
>	DirectionVector	(1, 0, 0)
>	End	(15. 31)
>	Start	(-15, 31)
	Width	30
	WidthEffective	43.62
\checkmark 3.Design Recommendations		
	MaximalWidth	43.62 [mm] (OK)
	RequiredWidth	11 [mm]
\checkmark	4.Misc	
	Name	0-Plate
	PlateType	Web
\checkmark	Other	
	Comment	
	Guid	9741932-3d49-4513-8bb
	Layer	Default

For any selected plate, information concerning thickness, assigned material and length are available. Those data can be treated as reference when defining design variables.

CREATE NEW ANALYTICAL PROJECT

To create new analytical project, Thin-Walled Cross Sections need to be imported. Click "New" button and select VCS file with cross sections that are to be analysed.

* Note that only calculated cross sections can be imported.
** Cross section needs to be defined accordingly to the Macro Element Method requirements.

After the import is completed, the cross sections and materials are added to the Solution Explorer tree and placed in appropriate folder.

Solution Explorer

- 盟 Analytical Project

1] CS 0:0-Crashbox
${ }^{2}$ CS 1:1-A-Pillar
2. CS 2:4-Roof Cross Member

Materials
2000168 (LS_DYNA)
2000166 (LS_DYNA)
498 (LS_DYNA)
389 (LS_DYNA)
. 385 (LS_DYNA)

- $\quad 500$ (LS_DYNA)
- -297 (LS_DYNA)

Combinations

- Analytical Combination
\qquad

Select "Open" button to open previously created CSA analytical project.
Please note that CSA files have .vcsa extensions.

	Ma Material MP Move Point Th Thickness Le Length Variables	Combination Report Add Objects	Calculate Calculate	Select Rotate Tools	3 Delete Edit

The project is opened and ready to use. If the folder with project's results is available, then project don't need recalculation to display Report. If the results folder is not available, recalculate project to be able to use all report functionalities.

In the "Object Import" window on the lefthand side there is a list with a complete set of cross sections and materials available in the selected file.

Click "Import All Available Objects" button to import all cross sections and materials available in the file. the fire.

Additional cross sections and materials can be imported at any time.

In order to import objects, click on File and select the "Import" option.
Select a VCS file from which you wish to import objects and press Open.

After the import is completed, the cross sections and materials are added to the Solution Explorer tree and placed in appropriate folder.

Solution Explorer

\square Analytical Project

\square CS 0:0-Crashbox
\square CS 1:1-A-Pillar
\int CS 2:4-Roof Cross Member
Materials
2000168 (LS_DYNA)
2000166 (LS_DYNA)
498 (LS_DYNA)
389 (LS_DYNA)
. 385 (LS_DYNA)

- $\quad 500$ (LS_DYNA)
- $\quad 297$ (LS_DYNA)
\square Common Combinations
盟 Analytical Combination
\qquad


```
1. Material - Atributes
    Type
v 2. Material Constants
HardeningFactor 1
MassDensity 2700
PoissonRatio 0.3
ProofStrain 0.002
ProofStress }32
YoungModulus }7000
* 3.Stress - Strain Characteristic
StressStrainCharacteristic A=114, n=0.42. epsf=0.26. AO
    StressStrainCharacteristic PowerLaw
    StressStrainHardeningLaw 100 [%] isotropic
    StressStrainHardeningTyp Isotropic
    StressStrainMeasure
* 4.Strain-Rate Effects
    StrainRateCharacteristic
    StrainRateType
    C=2 E-3 . eps_0=1
    JohnsonCook
\checkmark 5. Fracture Indicator
    AreaReduction
    D
    CL
    Fracture
```

All imported objects can be found in the Explorer window．
Detailed definition of a material can be viewed in the Properties window．
Double click on a selected material to open the Material Editor window in which stress－strain and strain rate characteristics are displayed．

For each "Analytical Combination" user can define four types of design variables: material, thickness, length and move point.

File	Home	View	About			
\square New Open Project	MP Move Point Th Thickness Le Length Variables				Calculate Calculate	$\$$ Delete Edit

\square 琞 Analytical Project

15-Double hat \& diaphragm
$\pm \cdots \nmid$ Materials
\square Common Combinations
Analytical Combination
Material Design Variables
Thickness Design Variables
Length Design Variables
Move Points Design Variables
Reports

Design variables folders are located under the "Analytical Combinations" branch of the Explorer tree.

In order to open and define a chosen design variable select the appropriate folder in the Explorer window. Afterwards click on the design variable icon available in the CSA main toolbar.

Newly created design variable will be added to the fitting folder in the Explorer window.

Material Design Variable

Thickness Design Variable

Length Design Variable

Move Point Design Variable

Assign various materials to a selected plate or a group of plates

Assign various thickness values within the defined range to a selected plate or a group of plates.

Assign various length values within the defined range to a selected plate or a group of plates.
Additionally define moving and/or restricted points of the cross section

Change coordinates of selected points along a predefined vector. Analyze various geometry variants

1. Create material design variable

The Material Design Variable enables to assign various materials to a selected plate or a group of plates from different cross sections.

In order to define a design variable, select the Analytical Combination branch in the Explorer window.

Afterwards click on the design variable icon available in the main toolbar.

■ 㽞 Analytical Project
CS 0: 0 -Thin Walled Cross Section
${ }^{2}$ CS 1:1-Thin Walled Cross Section
CS 2: 2-Crashbox
C CS 3:3-A-Pillar
C CS 4:4-Rocker Panel
CS 5:5-Bumper
+… Materials
\square Common Combinations

- An Analtical Combination Material Design Variables
\square Inickness Uesign vanables
Length Design Variables Move Points Design Variables
\square Reports
Analyzer Report

2. Set material design variable

Automatically a new Material Design Variable will appear in the Explorer tree. Double click on it to open "Browse for material" and set the materials.

\square Common Combinations
- Analytical Combination
Material Desion Variables

"Browse for Material" window includes a list of all imported materials.

For each selected material, the user can view its stress-strain chart and properties.

Select number of materials for analysis and confirm by "OK".

Multiple materials can be selected with CTRL.

Select material design variable in the explorer tree to preview its settings. In the "Values" section of the Properties window all defined material options are listed.

\checkmark Misc	
Name	M-DV-0
\checkmark Values	\{2000121 (LS_DYNA)', 2000122 (LS
Option 1	2000121 (LS_DYNA)
Option 2	2000122 (LS_DYNA)
Option 3	2000132 (LS_DYNA)
Option 4	2000138 (LS_DYNA)

Selected materials can be changed at any time.

Material Design Variable

3．Assign Plates to previously defined design variable

Select required plate or number of plates and afterwards drag and drop them in the appropriate design variable（in the Explorer window）．
（＊）Please note that you can add plates from different cross sections．Double click on cross section to open its window．

Step－by－step instruction on how to add plates to a variable is given below：

1）Select required plate or number of plates in the 2D view．Use the CTRL button or area selection option to select multiple plates．
All selected elements will be marked in orange．
（＊）Please note that points are also automatically selected when using the area selection．They will however not be assigned to
 material nor thickness design variable．

\square 紫 Analytical Project

\square Combinations
盟 Analytical Con jination
$\square \square$ Material Desian Variables
Ma M－DV－0
\square Ihickness Design Variables Length Design Variables Move Points Design VariablesReports

2）After selecting plates，drag and drop them in the appropriate design variable in the Explorer tree．

3）All assigned plates will be automatically added to the design variable in the Explorer tree．Note that the plates contain information about the cross－section they come from．
（＊）After selecting a design variable in the Explorer window all plates assigned to it will be highlighted in orange in the $2 D$ view window．
$\square \square$ Combinations
回 A Analytical Combination $\square \square$ Material Design Variables
－Ma M－DV－0
\because CS 0：0－Plate
\therefore CS 0：0－Plate
－CS 0：0－Plate
＿CS 0：0－Plate
－CS 0：0－PlateThickness Design Variables
\square Length Design Variables Move Points Design Variables

1. Create thickness design variable

The Thickness Design Variable enables to assign various thickness values within the defined range to a selected plate or a group of plates from different cross sections.

In order to define a design variable, select the Analytical Combination branch in the Explorer window. Afterwards click on the design variable icon available in the main toolbar.

- Analytical Project

0 -Double hat \& diaphragm
$1 \succeq$ Materials
2000121 (LS_DYNA)
\square Common Combinations

- Analtical Combination
Material Design Variables
Thickness Design Variables
Length Design Vanables
Move Points Design Variables
Reports

2. Set thickness design variable

Automatically a new Thickness Design Variable will appear in the Explorer tree. Double click on it to open "Thickness Design Variable Editor" and set the thicknesses.
\square Combinations

亩 Analytical Combination

 \square Material Design Variables \square Thickness Design Variables T-DV-0

In the "Thickness Design Variable Editor" the minimum and maximum value of plates thicknesses can be set. Additionally, the increment needs to be defined.

Alternatively, after checking the "Manual" option, it is possible to input set of user defined thickness values.

The design variable definition procedure ends by clicking on the "Apply" button.

Useful keyboard shortcuts:
Key: L - show lengths
Key: \boldsymbol{T} - show thickness

Click on the cross section 2D view and use one of the presented keyboard shortcuts in order to display plates thicknesses and / or lengths.

Basing on the design variables definition the software will automatically create cross sectional design variants, where prior selected plates will be given various thickness values.

Select specific design variable in the explorer tree to preview its settings. In the "Values" section of the Properties window all defined thickness options are listed.

Δ Misc	$\mathbf{0 . 5}$
Increment	(Collection)
Manual	$\mathbf{3}$
Maximum	$\mathbf{0 . 5}$
Minimum	T-DV-1
Name	True
Synthetic	$\left\{0.5^{\prime}, 1^{\prime}, 1.5^{\prime}, 2^{\prime}, 2,5^{\prime}, 3^{\prime}\right\}$
Values	$\mathbf{0 . 5}$
Option 1	$\mathbf{1}$
Option 2	$\mathbf{1 . 5}$
Option 3	$\mathbf{2}$
Option 4	$\mathbf{2 . 5}$
Option 5	$\mathbf{3}$
Option 6	\mathbf{l}

3．Assign Plates to previously defined design variable

Select required plate or number of plates and afterwards drag and drop them in the appropriate design variable（in the Explorer window）．
（＊）Please note that you can add plates from different cross sections．Double click on cross section to open its window．

Step－by－step instruction on how to add plates to a variable is given below：

1）Select required plate or number of plates in the 2D view．Use the CTRL button or area selection option to select multiple plates．
All selected elements will be marked in orange．
（＊）Please note that points are also automatically selected when using the area selection．They will however not be assigned to
 material nor thickness design variable．
－．Analytical Project
I 15 －Double hat $\&$ diaphragm

自恝 Analytica Combination
\square Mat rial Design Variables
Thic ness Design Variables
．．．Th T－DV－1
Length Uesign Variables
Move Points Design Variables

Reports
－．．．－Analyzer Report

3）All assigned plates will be automatically added to the design variable in the Explorer tree．Note that the plates contain information about the cross－section they come from．
（＊）After selecting a design variable in the Explorer window，all plates assigned to it will be highlighted in orange in the 2D view window．
\square

2）After selecting plates，drag and drop them in the appropriate design variable in the Explorer tree．

Common Combinations
自盟 Analytical Combination

Material Design Variables Thickness Design Variables $\begin{array}{r} \text { T-DV-0 } \\ \square \text { CS 0: 11-Plate } \\ \hdashline \text { CS 0: 11-Plate } \\ \hdashline \operatorname{CS} 0: 11 \text {-Plate } \\ \hdashline \operatorname{CS} 0: 15 \text {-Plate } \end{array}$ Length Design Variables Move Points Design Variables

1. Create length design variable

The Length Design Variable enables to assign various length values within the defined range to a selected plate or a group of plates from different cross sections.

In order to define a design variable, select the Analytical Combination branch in the Explorer window. Afterwards click on the design variable icon available in the main toolbar.

Ma Material MP Move Point
Th Thickness
Le Length
Variables
\square. Analytical Project
O-Double hat \& diaphragm
Materials
2000121 (LS_DYNA)
\square Common Combinations

- Analytical Combination Material Design Variables Thickness Desian Variables Length Design Variables iviove Foints Design VanabiesReports

2. Set length design variable

Automatically a new Length Design Variable will appear in the Explorer tree. Double click on it to open "Length Design Variable Editor" and set the thicknesses.

白盟 Analytical Combination

The Length Design Variable offers two definition options:

- Multiple Plates (the same length)
- Multiple Plates (slaves proportional length)

In the "Length Design Variable" window the minimum and maximum length value for chosen plate or number of plates can be set.
Additionally, the increment needs to be defined.

Alternatively, after checking the "Manual" option, it is possible to enter set of user defined length values.

Useful keyboard shortcuts:
Key: L - show lengths
Key: \boldsymbol{T} - show thickness

Click on the cross section 2D view and use one of the presented keyboard shortcuts in order to display plates thicknesses and / or lengths.

3. Assign Plates and Points to previously defined design variable

After the definition of Length Design Variable is completed a plate or number of plates need to be assigned to it, as well as a set of master and slave points.
(*) Please note that you can add plates from different cross sections, but proportional plates length is implemented only within one section. Double click on cross section to open its window.

Sample procedures for assigning plates to design variables are described below:

Case 1: Single Plate

1) Select Plate - during the analysis process CSA will automatically create number of cross-sectional design concepts in which this plate's length will be changed accordingly to the design variable's definition.
2) Drag and drop the plate to previously defined Length Design Variable in the Explorer window. Note that the plates contain information about the crosssection they come from.

3) Select Master Point (moving point) - plate's length will be changed in the direction of the selected point. In other words, only this selected point will be "moved".
4) Drag and drop selected Master Point to Plate in the Explorer tree

Case 2: Multiple Points

To each plate within a length design variable Slave Points can be assigned. Those points will be moved proportionally to the movement of the master point.

Drag and drop selected Slave Points to Plate in the Explorer tree in the same way as the master point.

Note that the first Point added to the Explorer tree is the

Length Design Variables - Le L-DV-0

- \cdots CS 0: 11-Plate $M \square$ Point (2D)
- - Point (2D)
… - Point (2D)
… - Point (2D) master point. All points added below will be slave points.

The slave point will be moved along a vector parallel to the master plate.

Case 3: Multiple Plates

To one Length Design Variable several plates can be assigned.

To each plate a moving point needs to be selected.

The Length Design Variable offers two options of multiple plate movement definition:

1. Multiple plates - the same length
2. Multiple plates - slaves proportional length

Case 3.1: Multiple plates - the same length

In case of the "the same length" option all plates assigned to the design variable will share the same length value.
-Variable type:
© Multiple Plates (the same length)
C Multiple Plates (slaves proportional length)

To each plate a moving point needs to be selected.
All moving Points (marked below in orange and blue) will change its position along a line tangent to its original plate (see below).

In consequence of such plate-length change in the presented example, the angles between plates of the cross section will be changed.

- Master Point (first Plate)
- Master Point (second Plate)

Case 3.2: Multiple plates - slaves proportional length

In case of the "slaves proportional length" the plate "defined" as a slave plate will change its length proportionally to the master plate.

-Variable type:

C Multiple Plates (the same length)
(6) Multiple Plates (slaves proportional length)

Note that the first Plate added to the Explorer tree is the master plate. All plates added below will be slave plates.

In the pictures below, the master plate is marked in orange and slave plates in blue.
To each plate a moving point needs to be selected.
The slave points (marked below in blue) will change their position along a line tangent to their original plates (see below), but they will not share a common length value. The length value will change proportionally to the master plate

Length Design Variables
自. Le L-DV-0 -1.M.CS 0: 11-Plate -...ME Point (2D)
 - M Point (2D) - \cdots CS 0: 0-Plate

- $M=$ Point (2D)
\square O... CS 0: 0-Plate
M_{\square} Point (2D)

In consequence of such plate-length change in the presented example, the angles between plates of the cross section will remain the same.

Move Point Design Variable

1. Create move point design variable

The Move Points Design Variable enables to assign various point vector values to a selected point or a group of points from different cross sections.

In order to define a design variable, select the Analytical Combination branch in the Explorer window.

Afterwards click on the design variable icon available in the main toolbar.

Ma Material MP Move Point
Th Thickness
Le Length
Variables

Analytical Project
0 -Double hat \& diaphragm

- Materials
\square Common Combinations
- Analytical Combination
\square Material Design Variables
Thickness Design Variables
Iength Design Variables
Move Points Design Variables
Reports
聖 Analytical Combination
\square Material Design Variables
Thickness Design Variables
\cdots Length Desian Variables \square Move Points Design Variables \square MP MP-DV-0

2. Assign points to the move point design variable

After the definition of Move Point Design Variable is completed, a points need to be assigned to it. Select required points or number of points and afterwards drag and drop them in the appropriate design variable (in the Explorer window).
(*) Please note that you can add plates from different cross sections. Double click on cross section to open its window.

Sample procedures for assigning plates to design variables are-described on the next page:

1) Select required point or number of points in the 2D view. Use the CTRL button or area selection option to select multiple points. All selected elements will be marked in red.
(*) Please note that points are also automatically selected when using the area selection. They will however not be assigned to material nor thickness design variable.

\square Common Combinations

亩帤 Analytical Combination

2) After selecting plates, drag and drop them in the appropriate design variable in the Explorer tree.
3) All assigned plates will be automatically added to the design variable in the Explorer tree.
(*) After selecting a design variable in the Explorer window, all plates assigned to it will be highlighted in orange in the 2D view window.

3. Set move point design variable

Automatically a new Move Point Design Variable will appear in the Explorer tree. Double click on it to open "Move Point Design Variable Editor" and set values.

	Move Point Design Variable Editor x	
Define the vector values (X and Y coordinates)	$\begin{aligned} & \text { Vector values: } \\ & \text { x: } \\ & \hline 0.5 \end{aligned}$	
	$Y: \quad \Gamma 0.3$	
Define increment and number of steps	Increment: $\sqrt{10}$	
	Steps: 5	

Define additional vector in selected direction
Γ Include Inverted Coordinates
Invert:
6 Invert X and Y
C Invert X
\checkmark Invent Y

User defined vector

Point assigned to a Move Point Design Variable

Move point design variable can be previewed at any time.

After clicking on a Move Point Design Variable in the explorer tree all points assigned to it will be marked in red and vectors are displayed as blue lines.

Inverted vectors

Move Point Design Variable gives the possibility to create additional inverted vector. Three options of inversion are described below:

Invert X and Y

This option enables creation of additional vector in an inverted X and Y direction (marked in green in the picture below).
In the Properties window of Move Point Design Variable, the defined options can be previewed.

As a result of a fully defined move point design variable the CSA will automatically generate number of cross-sectional design variants.

\checkmark Misc	
IncludeReverseVector	True
IncrementStep	$\mathbf{5}$
MoveVectorX	$\mathbf{5}$
MoveVectorY	$-\mathbf{1 0}$
Name	MP-DV-0
Reverse_X	True
Reverse_Y	True
Steps	$\mathbf{3}$
Values	$\left\{-10^{\prime}, \mathbf{- 5}, 0^{\prime}, 5^{\prime}, 10^{\prime}\right\}$
Option 1	$-\mathbf{1 0}$
Option 2	$\mathbf{- 5}$
Option 3	$\mathbf{0}$
Option 4	$\mathbf{5}$
Option 5	$\mathbf{1 0}$

Move Point Design Variable Editor

Coordinates of assigned points will be changed along the defined vectors.
Please see the example below:

Original cross section

Examples of automatically generated variants of cross-sectional geometry.

Invert X

This option enables the creation of additional vector in inverted X direction (marked in green in the picture below).

In the Properties window of Move Point Design Variable, the defined options can be previewed.

Coordinates of assigned points will be changed along the defined vectors.
Please see the example below:

Original cross section

Examples of automatically generated variants of cross-sectional geometry.

Invert Y

This option enables the creation of additional vector in inverted \boldsymbol{Y} direction (marked in green in the picture below).

In the Properties window of Move Point Design

V Include Inverted Coordinates

Invert:
C Invert X and Y
C Invert X
C Invert Y

Invert X
C. Invert Y Variable, the defined options can be previewed.

Coordinates of assigned points will be changed along
 the defined vectors. Please see the example below:

Include Inverted Coordinates

Invert:
C Invert X and Y
C Invert X
C Invert Y

OK
Cancel
Apply

Note that Move Point Design Variable settings can be viewed and edited in the Properties window.
Inverted vector settings also can be changed in the Properties window.

Move Points Design Variables
-
MP MP-DV-3
.- - Point (2D)
\ldots Point (2D)

Misc
IncludeReverseVector
IncrementStep
MoveVectorX
MoveVector Y
Name
Reverse_X
Reverse_Y
Steps
Values

Independent vectors

Note that the Move Point Design Variable can be edited for each point independently in the Properties window. The change of vector setting can be made after selecting a specific point in the Explorer Tree.
Coordinates of assigned points will be changed along the defined vectors.
Please see the example below:

Original cross section

Examples of automatically generated variants of cross-sectional geometry.

User can create number of analytical combinations within a single Analyzer Project. This enables to analyze even more design option within one Analyzer Project.

User can have common Analytical Combination for all cross sections or an Analytical Combination for each cross section separately.

In order to create additional Analytical Combination, select place to be added and simply click on the icon in CSA main menu.

File	Home	View	About			
\square New Open Project	$$				Calculate Calculate	3 Delete Edit

New Analytical Combination branch will be added to the Explorer tree together with a set of folders for four types of design variables.

Alternatively，you can create an internal Analytical Combination for each cross section．
In this case，select requested cross section and click Combination button．After that internal analytical combination will be added to the cross section and will be ready to create variables．

\square

CS 0：0－Crashbox
CS T：1－A－Pllar
CS 2： 2 －Upper Rail
CS 3： 3 －Rocker Panel
CS 4： 4 －Roof Cross Member
CS 5： 5 －Circle
CS 6：6－Bumper

Common Combinations
 Analytical Combination Material Design Variables Thickness Design Variables Length Design Variables Move Points Design Variables
Reports
－资 Analytical Project

Reports

The Cross Section Analyzer automatically creates and calculates cross sectional design variants (combinations) basing on the previously defined design variables.

In order to start the calculation routine, indicate in the Explorer tree what is to be calculated , click on the "Calculate" icon in the main toolbar.

Calculation of the entire Analytical project is always possible regardless of the object currently selected in the Explorer tree. After selecting Calculate button, question window appears. Select the Analytical Project radio button and confirm by "OK".

In order to calculate only Common Combinations, before selecting Calculate button, user needs to indicate the Common Combination or any elements of the "Common Combination" folder. In the question window select the proper radio button and confirm by "OK".

In order to calculate only Internal Combinations of a specific cross section, before selecting Calculate button, user needs to indicate the cross section that is to be calculated or any element within its folder, select proper radio button in the question window and confirm by "OK".

Important notice:

CSA project needs to be saved before the calculations.

Analyzer - Start Calculations

In the "Analyzer - Start Calculations" window user can preview the number of cross sections that are to be calculated. In the given example the software created 880 cross sections

Calculation Completed \times

Finished calculations of 880 CrossSections in 00:00:59.5979245 [h:m:s]

One of the greatest advantages on the Analyzer software is the speed of calculations.
In the given example calculation of 880 cross sections took slightly over 59 seconds.

If you start a calculation but a file with that name already exists, you will be asked whether to overwrite the results or save the project as a new file. Select the appropriate action.

Information
\times

Do you want to override results?

Results of the cross-sectional analysis are available in the "Analyzer Report" window.

In the cross sections zone, user can find a list of available Cross Sections. The user can display all available cross sections or choose several that are meaningful to him.

In this zone user can also find information about number of calculated variants of specific cross sections and number of combinations related to them.

The corresponding columns in the list of results contain cross-section indexes.

	CheckBox	Name	CS_0 AC(1)_L-DV-0	CS_1 AC(2)_L-DV-0	S_1 AC(3)_M-DV-0	CS_3 AC(4)_T-DV-2	CS_3 AC(4)_M-DV-1	CS_5 AC(5)_MP-DV-0	Area	Spe
Click to Open	-	0-Thin Walled Cr ...	-1	-1	-1	-1	-1	-1	348.6826	2.75
Click to Open	\square	1-Thin Walled Cr ...	-1	-1	-1	-1	-1	-1	343.0159	2.70
Click to Open	\square	2 - Crashbox	-1	-1	-1	-1	-1	-1	723.28	5.70
Click to Open	\square	3 - A-Pillar	-1	-1	-1	-1	-1	-1	429.0094	3.37
Click to Open	\square	4 - Rocker Panel	-1	-1	-1	-1	-1	-1	1101.0796	8.67
Click to Open	\square	5 - Bumper	-1	-1	-1	-1	-1	-1	531.35	4.17
Click to Open	\square	AC1, 0	40	-1	-1	-1	-1	-1	404.7421	3.19
Click to Open	\square	AC1. 1	43	-1	-1	-1	-1	-1	416.5231	3.29
Click to Open	\square	AC1. 2	46	-1	-1	-1	-1	-1	428.3355	3.38
Click to Open	\square	AC1, 3	49	-1	-1	-1	-1	-1	440.1727	3.47
Click to Open	\square	AC1, 4	52	-1	-1	-1	-1	-1	452.0301	3.57
Click to Open	\square	AC1, 5	55	-1	-1	-1	-1	-1	463.9042	3.66
Click to Open	\square	AC1. 6	58	-1	-1	-1	-1	-1	475.7922	3.75
Click to Open	\square	AC1, 7	61	-1	-1	-1	-1	-1	487.6919	3.85
Click to Open	\checkmark	AC1, 8	64	-1	-1	-1	-1	-1	499.6014	3.94

In the combination zone, user can find a list of available Analytical Combinations. The user can display all available combinations or choose several that are meaningful to him.

In this zone user can also find information about number of population of specific combination and info if they are calculated in the current opening.

The corresponding columns in the list of results contain analytical combination indexes.

	CheckBox	Name		OAC(1)_L-DV-0	CS_1 AC(2)_L-DV-0		$1 \mathrm{AC}(3)$ _M-DV-0	CS_3 AC(4)_T-DV-2	CS_3 AC(4)_M-DV-1	CS_5 AC(5)_MP-DV-0	Area	Spe
Click to Open	\square	O-Thin Walled $\mathrm{Cr}_{\text {rem }}$	-1		-1	-1		-1	-1	-1	348.6826	2.75
Click to Open	\square	1-Thin Walled Cr .	-1		1	1		-1	-1	-1	343.0159	2.70
Click to Open	\square	2-Crashbox	-1		-1	-1		-1	-1	-1	723.28	5.70
Click to Open	\square	3-A-Pillar	-1		-1	-1		-1	-1	-1	429.0094	3.37
Click to Open	\square	4 - Rocker Panel	-1		-1	-1		-1	-1	-1	1101.0796	8.67
Click to Open	\square	5 - Bumper	-1		-1	-1		-1	-1	-1	531.35	4.17
Click to Open	\square	AC1, 0	40		-1	-1		-1	-1	-1	404.7421	3.19
Click to Open	\square	AC1, 1	43		-1	-1		-1	-1	-1	416.5231	3.29
Click to Open	\square	AC1. 2	46		-1	-1		-1	-1	-1	428.3355	3.38
Click to Open	\square	AC1, 3	49		-1	-1		-1	-1	-1	440.1727	3.47
Click to Open	\square	AC1, 4	52		-1	-1		-1	-1	-1	452.0301	3.57
Click to Open	0	AC1, 5	55		-1	-1		-1	-1	-1	463.9042	3.66
Click to Open	\square	AC1, 6	58		-1	-1		-1	-1	-1	475.7922	3.75
Click to Open	\square	AC1, 7	61		-1	-1		-1	-1	-1	487.6919	3.85
Click to Open	\bigcirc	AC1, 8	64		-1	-1		-1	-1	-1	499.6014	3.94

List of all available parameters.

The user can choose several types of results that are meaningful to him.

When the specific parameter is selected, its values will be added to the cross-section list and to the Radar window.

In appropriate columns user can find the minimum and maximum values of specific results detected after calculation.

Filters limiting the maximum and / or minimum value of a parameter can be applied here.

* Detailed information on the parameters is available in the "VCS - Cross Section Editor Manual".

	CheckBox	Name	CS_1 AC(1)_M-DV-0	CS_3 AC(2)_T-DV-2	CS_3AC(2)_M-DV-1	CS_5AC(3)_MP-DV-0	Area	Specific Mass	Axial Response - Energy Absorption	Axial Response - PeakForce	Axial Response - SEA
Click to Open	\square	O-Thin Werled $\mathrm{Cr}_{\text {r }}$	-1	-1	-1	-1	348.6826	2.7546	43132.0001754468	105518.003545305	15.6582
Click to Open	\square	${ }^{1-T}$ Thin Walled Cr .	-1	-1	-1	-1	343.0159	2.7098	43150.9265408419	103672.900589547	15.924
Click to Open	\square	2-Crashbox	-1	-1	-1	-1	723.28	5.7067	84062.3205721938	201905.844313108	14.7305
Click to Open	\square	3 - A-Pillar	-1	-1	-1	-1	429.0094	3.3732	59759.7221350023	139088.731837361	17.716
Click to Open	\square	4 - Rocker Panel	-1	-1	-1	-1	1101.0796	8.6747	156707.054054985	433404.759858316	18.0648
Click to Open	\square	5 - Bumper	-1	-1	-1	-1	531.35	4.1711	158924.891477947	297969.327125176	38.1014
Click to Open	\square	AC1, 0	Mild steel 325	-1	-1	-1	343.0159	2.7098	43150.9265408419	103672.900589547	15.924
Click to Open	0	AC1, 1	6061-T6 aluminium	-1	-1	-1	343.0159	2.2117	39480.5805505522	97838.8890835145	17.8508
Click to Open	\square	AC1. 2	2024-T351aluminium	-1	-1	-1	343.0159	2.2117	41939.9457397688	96503.1304516241	18.9628
Click to Open	\square	AC1, 3	AISI 1006 Steel	-1	-1	-1	343.0159	2.7098	46530.6896910868	109283.219220015	17.1713
Click to Open	\square	AC1, 4	AISI 4340 Steel	-1	-1	-1	343.0159	2.7098	68268.7089072078	129824.564679851	25.1933
Click to Open	\square	AC1. 5	7039 aluminium	-1	-1	-1	343.0159	2.2117	46482.4243626853	107859.121967646	21.0166
Click to Open	0	AC1, 6	304 Stainless Steel	-1	-1	-1	343.0159	2.7098	45903.4710336193	108140.413319334	16.9398
Click to Open	\square	AC1. 7	5056 aluminium	-1	-1	-1	343.0159	2.2117	41939.9457397688	96503.1304516241	18.9628
Click to Open	\square	AC1, 8	AISI 1045	-1	-1	-1	343.0159	2.7098	62923.0728625255	120401.596643474	23.2206
Click to Open	0	AC1, 9	Mild steel 460	-1	-1	-1	343.0159	2.7098	47517.361368007	115313.088065842	17.5354
Click to Open	\square	AC1, 10	Mild steel 250	-1	-1	-1	343.0159	2.7098	41107.7918135822	96525.550329611	15.17
Click to Open	\square	AC1, 11	Mild steel 260	-1	-1	-1	343.0159	2.7098	41404.5787755328	98051.6265794439	15.2796
Click to Open	0	AC1. 12	Docol 8001.25 mm	-1	-1	-1	343.0159	2.7098	61918.5689944743	123012.068590618	22.8499

Double click on a selected parameter to define the results filter

3. Confirm by "OK" button

The filter is now defined. You can see the number of cross sections within the filter's range in the "In\#" column (see below).
In the "List of calculated cross sections" window only those cross sections which fulfill the filter's conditions will be listed (as long, as the filtered parameter is checked).

Parameter Name	Filter Min	Filter Max	Min	Max	\#ln
\checkmark Area			256.08	378.5	
\checkmark Specific Mass	2.01	2.2	2.01	2.97	
\square Axial Response - Energy Absorption			39502.33	53655.21	
\checkmark Axial Response - PeakForce			94521.18	243617.85	179
\checkmark Axial Response - SEA			17.72	23.44	179
\square Axial Response - Squash Load			106274.29	319575.44	179

Number of cross section which are contained within the filter's range.

On the top of the report window additional information about common set of cross sections is displayed.
"Common set" gives the number of cross sections which fulfil the requirements of all defined filters.

In the example presented above 2 filters were defined (for specific mass and SEA).
From the total number of 179 calculated cross sections 25 fit in the range of both filters.

List containing all cross-sectional design variants which fulfill the filtering limitations, or all calculated variants if no filter has been defined.

Grouping by data content functionality.			Check-boxes allow to export and compare cross-sections.		Column group that contains information about each assigned design variable for all analytical combinations.				
Drag a colum header here to groul oy that olumn.									
	Checkbex	Name	$\mathrm{CS}_{3} 3 \mathrm{AC}(1)$ T-PV- 2	CS_3AC(1)M-DV-1	CS__SAC2 MMP-DV-0	Ares	Specific Mass	Axial Response- Peakforce	Axial Response- SEA
click fopen	\square		\|	-1		${ }^{3488326}$	${ }_{2}^{277389}$		${ }_{156592}^{15924}$
Click	0	2.-Crashox	${ }_{-1}^{-1}$	-1	-1	72328	5.7067	201905.843131108	14.7305
Click to open	0	3-APillar	-1	-1		4290094	33772	139088.731337361	177716
	0	4. Recker Panel	\|	-1	-1		8.8677 41711	${ }^{4339404.759858316}$	18.0648 381014
Click l Open	0	AC1.00	-	Mild stel 325	-1	33855735	3.0605	11661825484220517	16.4009
Click to open	0	ACC. 01			-1	${ }^{3885735}$	25699 2569	${ }^{1040073.156999477}$	192639
Click to open Cick copen	8				-1	${ }^{338.5735}$	${ }_{\substack{25699 \\ 30959}}$		19.7725
Clickt ${ }^{\text {copen }}$ Cick to Oen	0	${ }_{\text {ack }}^{\text {ACl } 1.03}$			-1	${ }^{3885735}$			-16887
	8	${ }_{\text {Acli }}$!		-1	${ }^{33885755}$	${ }^{3.0605}$	+136534.57893574	${ }_{20.19231}^{19231}$
Click to Open		${ }_{\text {Act, } 06}$		304 Stininess Steel	-1	${ }^{30855735}$	${ }_{3.0005}^{2.069}$	1170086898559201	${ }_{15} 1.942$
Click to open		AC1. 07	1	5056 aluninum	-1	${ }^{388.5735}$	2.5699	103250.593461231	19.7725
Click to Open	0			ASII 1045	-1	338.5735	3.0605	${ }^{128956.1692999846}$	192059
	8	${ }_{\text {Acl }}^{\text {Ac1, } 09}$	1		-1	${ }^{338.5755}{ }_{3}$	- $\begin{aligned} & 3.0605 \\ & 3.065\end{aligned}$	121820.63497576 11220730625204	17.0986 161079
Click ${ }^{\text {copen }}$ Clickto open	8	${ }_{\text {Acl }}^{\text {Ac1,010 }}$		Mild steel 230	$\stackrel{-1}{-1}$	${ }^{3885735}$	${ }^{3.0065}$		${ }^{166.1079}$
Click ko open		${ }^{\text {AC1 }} \mathbf{0} 1212$		Docol 8000.25 mm	+	${ }^{3385735}$	3.0605	${ }^{128723,35916272}$	19.274
Click ${ }^{\text {co Open }}$ Click o open		${ }_{\text {ACl }}^{\text {AC1. } 013}$		Deee Draw DCO1 11 m	-	3385535	3.0605	108336.1933838106	15.8995
Click to Open		AC1. 014		HSLA 320 (1.2 mm)	-1	388.5735	3.065	111656.300859971	16.9027
"Click to Open"			Column containing				Column group containing		
			the names of				values of parameters		
			cross-sectional						
section's			variants with				results.		
individual CSEwindow.			about combination						
			number.						

Please note that the data can be sorted by smallest or largest values after clicking on the header of selected column.

Area	Specific Mass Δ	Axial Response - PeakForce
256.0826	2.0102	107492.593454023
256.0826	2.0102	94521.1847427194
256.0826	2.0102	107900.389619759
256.0826	2.0102	94521.1847427194
259.4963	2.037	109320.720737806
261.6462	2.0539	110215.157955862
263.796	2.0708	111109.536114848
OTEOMEO	2 ก077	

Report

To group cross－sections by data content，drag and drop the specific header of the column according to which they are to be grouped．

Drag a column header here to group by that column．					
	CheckBox	Name	AC（1）＿T－DV－1	AC（1）＿L－DV－0	AC（2）＿M－DV－0
Click to Open		1－Thin Walled Cr ．．．	0	0	0
Click to Open	\square	AC1， 00	1	30	－1
Click to Open	\square	AC1， 01	1	31	－1
Click to Open	\square	AC1， 02	1	32	－1
Click to Open	\square	AC1， 03	1	33	－1
Click to Open	\square	AC1， 04	1	34	－1
Click to Open	\square	AC1， 05	1	35	－1
Click to Open	\square	AC1， 06	1	36	－1
Click to Open	\square	AC1． 07	1	37	－1
Click to Onen	\square	\triangle C1 08	1	38	－1

AC（1）＿T－DV－Δ

I AC（1）＿T－DV－1：－1（3 items）
（ AC（1）＿T－DV－1： 0 （1 item） （ AC（1）＿T－DV－1： 1 （11 items） （ AC（1）T－DV－1 ： 1.1 （11 items） （ AC（1）T－DV－1： 1.2 （11 items） （ AC（1）TT－DV－1 ： 1.3 （11 items）田 AC（1）＿T－DV－1 ： 1.4 （11 items）⿴囗 AC（1）＿T－DV－1 ： 1.5 （11 items） （ AC（1）TTDV－1 ： 1.6 （11 items） （ AC（1）TTDV－1： 1.7 （11 items） （ AC（1）＿T－DV－1 ： 1.8 （11 items） （ AC（1）T－DV－1 ： 1.9 （11 items） （ AC（1）＿T－DV－1： 2 （11 items）
＂Click to Open＂button enable to open cross－section＇s individual Cross Section Editor window

Drag a column header here to group by that column．

	CheckBox	Name	AC（1）＿T－DV－1	AC（1）＿L－DV－0	AC（2）＿M－DV－0	Area	Specific Mass
Click to Open	\square	1－Thin Waral．	0	0	0	256.0826	2.0102
Click to Open	\square	AC1， 00	1	30	－1	259.4963	2.037
Click to Open	\square	AC1． 01	1	31	－1	261.6462	2.0539
Click to Open	\square	AC1． 02	1	32	－1	263.796	2.0708
Click to Open	\square	AC1， 03	1	33	－1	265.9459	2.0877
Click to Open	\square	AC1， 04	1	34	－1	268.0958	2.1046
Click to Open	\square	AC1， 05	1	35	－1	270.2457	2.1214
Click to Open	\square	AC1． 06	1	36	－1	272.3955	2.1383

－View the geometry of the selected variant．
－All results are available in the Properties part of the window
－Additionally result charts are available under appropriate bookmarks．

Useful tip：
To display all results of selected cross－section，click its name in the upper left corner of the CSE．

Moreover，properties of any selected element of the cross section can be displayed．

Column group containing information about each assigned design variable for all analytical combinations.

Combination Name		\#Calculated	\#Population					
\checkmark AC1 Analytical Combination CS: 3		234	234					
\checkmark AC2 Analytical Combination CS: 5		10	10					
	CheckBox	Name	CS_3 AC(1)_T-DV-2	CS_3 AC(1)_M-DV-1	CS_5 AC(2)_MP-DV-0	Area	Specific Mass	Axial Res
Click to Open	\square	O-Thin Walled Cr ...	-1	-1	-1	348.6826	2.7546	105518.00
Click to Open	\square	1-Thin Walled Cr ...	-1	-1	-1	343.0159	2.7098	103672.90
Click to Open	\square	2 - Crashbox	-1	-1	-1	723.28	5.7067	201905.84
Click to Open	\square	3 - A-Pillar	-1	-1	-1	429.0094	3.3732	139088.73
Click to Open	\square	4 - Rocker Panel	-1	-1	-1	1101.0796	8.6747	433404.75
Click to Open	\square	5 - Bumper	-1	-1	-1	531.35	4.1711	297969.32
Click to Open	\square	AC1, 00	1	Mild steel 325	-1	388.5735	3.0605	116182.54
Click to Open	\square	AC1, 01	1	6061-T6 aluminium	-1	388.5735	2.5669	104073.15
Click to Open	\square	AC1, 02	1	2024-T351aluminium	-1	388.5735	2.5669	103250.59
Click to Open	\square	AC1, 03	1	AISI 1006 Steel	-1	388.5735	3.0605	118094.13
Click to Open	\square	AC1, 04	1	AISI 4340 Steel	-1	388.5735	3.0605	136534.57
Click to Open	\square	AC1, 05	1	7039 aluminium	-1	388.5735	2.5669	117678.69
Click to Open	\square	AC1. 06	1	304 Stainless Steel	-1	388.5735	3.0605	117086.89
Click to Open	\square	AC1, 07	1	5056 aluminium	-1	388.5735	2.5669	103250.59
Click to Open	\square	AC1, 08	1	AISI 1045	-1	388.5735	3.0605	128966.16
Click to Open	\square	AC1, 09	1	Mild steel 460	-1	388.5735	3.0605	121820.63

The number in brackets informs about the analytical combination it relates to.
The individual design variables can be identified by their symbol:
T - Thickness DV
M - Material DV
L-Length DV
MP - Move Point DV

Hide Variables

At any time, the group of columns with variables can be hidden using Hide Variables button.

Deselect All button

 from the toolbar.The "Radar" window allows to compare the different results of the selected cross-sections.
In the main Radar window, a radar graph illustrating the comparison of selected cross sections in percentage rate is displayed (only chosen results are taken into account).

Additionally, the graphs with line chart and axial, bending, torsion response can be displayed here.

To display Radar graph:

1. Select parameters that are to be included.
2. Add or remove a cross-sections to the comparison. Simply check or uncheck it in the "List of calculated cross sections" window.

Important notice

The selected cross-section (marked in blue) is treated as a reference point to which other values are compared (in percentage rate).

Apart from the "Radar" functionality the Results report includes the Line Chart bookmark which enables more detailed analysis of selected cross sections.

In the center of the "line chart" view lines representing results for number of selected cross sections are displayed.

In the example presented below:

- Blue line represents results for axial response - peak force.
- Results are given for 4 selected cross sections.
- One selected cross section is treated as a reference point to which other values are compared (in percentage rate). In the given example the third cross section is selected for reference, and therefore its results are given 100\% value.

On the " Y " axis percentage values are given.

Colorful lines represent results for prior selected response.

In the given example lines for 6 results are displayed.

Additionally, the results report is enhanced with the functionality of curve comparison. The user can compare charts for Axial, Bending or Torsion response of number of selected cross sections.

Each line represents response curve of one selected cross section.

In order to add or remove a cross section simply check or uncheck it in the "List of calculated cross sections" window.

All results of the Analyzer Report can by easily exported to PDF and Excel file.

Export to PDF

The user can save obtained results as PDF document.

Click on the "Export Report" icon to export results.

Only data visible on the list of cross section which fulfill the filtering limitations will be included in the exported PDF document.

Export to Excel

The user can save obtained results as .xls file type.

Click on the "Export to Excel" icon to export results.

Only data visible on the list of cross section which fulfill the filtering limitations will be included in the exported excel file.

	CheckBox	Name	AC(1)TT.DV-1	AC(1)_M-DV-0	AC(1)_L-DV-2	AC(1)_MP.DV-3	$\mathrm{AC}^{\text {C/2 }}$-T.DV-0	Area	Specfic Mass	Axial Response - SEA
Click to Open	False	15-Double hat \& diar		0	0	0	0	308	2.43	17.67
Click to Open	False	AC1. 0013	1	2000121 (LS_OYNA)	35	(4.242641, -4.242641,	-1	301.48	2.38	17.55
Click to Open	False	AC1.0023	1	2000121 (LS_OYNA)	40	(4.242641, - .242641,		300.22	2.37	17.89
Click to Open	False	AC1.0033	1	2000121 (LS_DYNA)	45	(4.242641, - 2 242641,		301.48	2.38	17.55
Click to Open	False	AC1.0113	1	2000122 (LS_OYNA)		(4.242641, - .242641,		301.48	2.38	17.55
Click to Open	False	AC1.0123	1	2000122 (LS_DYNA)	40	(4.242641, 4.242641,		300.22	2.37	17.89
Click to Open	False	AC1.0133	1	2000122 (LS_OYNA)	45	(4.242641, - .242641,		301.48	2.38	17.55
Click to Open	False	AC1, 0213	1	2000132 (LS_OYNA)	35	(4.242641, -4.242641,		301.48	2.38	19.93
Click to Open	False	AC1.0223	1	2000132 (LS_OYNA)	40	(4.242641, -4.242641,		300.22	2.37	20.28
Click to Open	False	AC1.0233	1	2000132 (LS_OYNA)	45	(4.242641, - 2 242641.		301.48	2.38	19.93
Click to Open	False	AC1,0313	1	2000138 (LS_OYNA)	35	(4.242641, -4.242641,		301.48	2.38	17.55
Click to Open	False	AC1.0323	1	2000138 (LS_OYNA)		(4.242641, -4.242641,		300.22	2.37	17.89
Click to Open	False	AC1.0333	1	2000138 (LS_OYNA)		(4.242641, 4.242641,		301.48	2.38	17.55

Each cross section generated during the analytical procedure can be saved and afterwards opened in VCS solution.

1. Select all cross sections that are to be saved in VCS file. Several cross sections can be exported simultaneously.
2. Click the "Save Selected Cross Sections" button (available in the main toolbar of the Analyzer Report).

	CheckBox	Name	CS_3AC(1)_T-DV-2	CS_3 AC(1)_M-DV-1	CS_5 AC(2)_MP-DV-0	Area	Specific Mass
Click to Open	\square	0 -Thin Walled $\mathrm{Cr}_{\text {r }}$	-1	-1	-1	348.6826	2.7546
Click to Open	\square	1-Thin Walled $\mathrm{Cr}_{\text {r }}$	-1	-1	-1	343.0159	2.7098
Click to Open	\square	2-Crashbox	-1	-1	-1	723.28	5.7067
Click to Open	\square	3 - A-Pillar	-1	-1	-1	429.0094	3.3732
Click to Open	\square	4 - Rocker Panel	-1	-1	-1	1101.0796	8.6747
Click to Open	\square	5 - Bumper	-1	-1	-1	531.35	4.1711
Click to Open	-	AC1, 00	1	Mild steel 325	-1	388.5735	3.0605
Click to Open	\cdots	AC1, 01	1	6061-T6 aluminium	-1	388.5735	2.5669
Click to Open	\square	AC1, 02	1	2024-T351aluminium	-1	388.5735	2.5669
Click to Open	\square	AC1. 03	1	AISI 1006 Steel	-1	388.5735	3.0605
Click to Open	\square	AC1, 04	1	AISI 4340 Steel	-1	388.5735	3.0605
Click to Open	\square	AC1, 05	1	7039 aluminium	-1	388.5735	2.5669
Click to Open	\square	AC1, 06	1	304 Stainless Steel	-1	388.5735	3.0605
Click to Open	\square	AC1, 07	1	5056 aluminium	-1	388.5735	2.5669
Click to Open	\square	AC1, 08	1	AISI 1045	-1	388.5735	3.0605
Click to Open	\square	AC1, 09	1	Mild steel 460	-1	388.5735	3.0605
Click to Open	\square	AC1. 010	1	Mild steel 250	-1	388.5735	3.0605
Click to Open	\square	AC1. 011	1	Mild steel 260	-1	388.5735	3.0605
Click to Open	\square	AC1, 012	1	Docol 8001.25 mm	-1	388.5735	3.0605

Report - Analyzer Report

Solution
\section*{-}
\square Thin-Walled Cross Sections
+ \square AC1, 00
+ \square AC1. 01
\square AC1. 05
\square AC1. 06
$\square \square$ AC1. 010
\square Solid Cross Sections
\ddagger Materials
Nodes
\square Beams

Double click on a chosen cross section to open it in the Cross Section Editor and to view its definition in the properties window.

The exported cross-sections can be easily used for further simulations in VCS.

After opening the saved VCS file, all previously selected cross sections are visible in the Solution Explorer tree.
Additionally, all materials available in the analytical project will be automatically added to the solution.

