

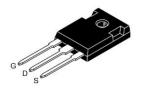
40mΩ, 1200V, Silicon Carbide N-Channel Power MOSFET

Description

The LXP SEMI LX1C040N120BW silicon carbide Power MOSFET device has been developed using LXP's advanced and innovative 1st generation SiC MOSFET technology. The device features a very low R_{DS(on)} over the entire temperature range combined with low capacitances and good switching performance, which improve application performance in frequency, energy efficiency, system size and weight reduction.

Key Features

- Typ. $R_{DS(on)} = 40m\Omega$ @ $V_{GS} = 18V$
- High speed switching performances
- Low Switching Losses
- 100% Avalanche Tested
- EMI Improved Design
- · Very fast and robust intrinsic body diode


Applications

- DC/DC converter for EV/HEV
- On board charger (OBC)
- · Solar Inverters
- · Energy Storage Systems
- SMPS (Switch Mode Power Supplies)

Key performance

Parameter	Value	Unit
V _{DS} (T _j =25°C)	1200	V
R _{DS(on)} , typ(T _j =25°C, I _D =24A, V _{GS} =18V)	40	mΩ
I _{D(Tj=25°C)}	59	А
T _{j, max}	175	°C

TO-247-3

Package Feature

Order code	Marking	Package	Packing
LX1C040N120BW	LX1C040N120B	TO-247-3PIN	Tube

1.Maximum Ratings (T_j=25°C unless otherwise specified)

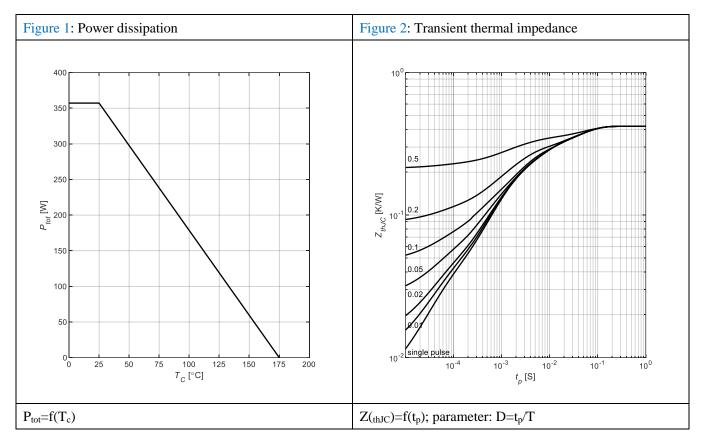
Paran	Symbol	Rating	Unit			
Drain-Source Voltage		V _{DSS}	1200	V		
Gate-Source Voltage		V _{GSS}	-10/+22	V		
Gate-Source Voltage Recommended Operation Values		V _{GSS}	-5/+18	V		
Gate-Source Transient Voltage (t _p < 1μs, t ≤ 10 hours)		V _{GSS}	-11/+25	V		
Continuous Drain Current	T _C = 25°C		59			
	T _C = 100°C	I _D	42	А		
Pulsed Drain Current (Note 2)		I _{DM}	195	А		
Avalanche Energy, Single Pulse (Note 3)		E _{AS}	312	mJ		
Avalanche Current, Repetitive (Note 2)		I _{AR}	25	А		
Continuous Diode Forward Current		Continuous Diode Forward Current		Is	59	А
Power Dissipation		P _{tot}	357	W		
Operating Temperature/ Storage Temperature		TJ	-55~175	°C		

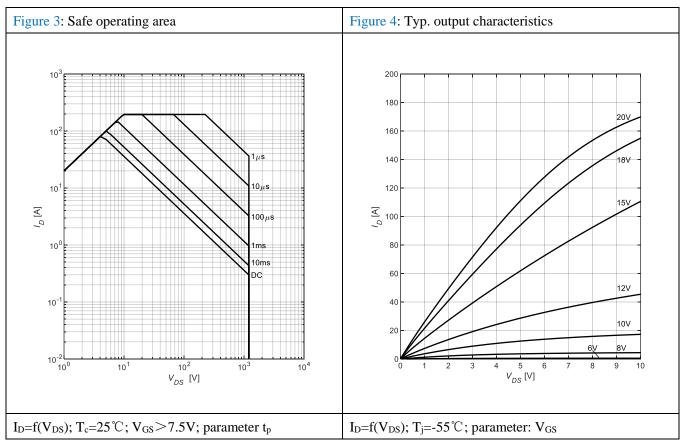
Note:

- 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L = 1mH, I_{AS} = 25A, V_{DD} = 120V, V_{GS} = 18V, R_g = 25 Ω , Starting T_J = 25 $^{\circ}C$

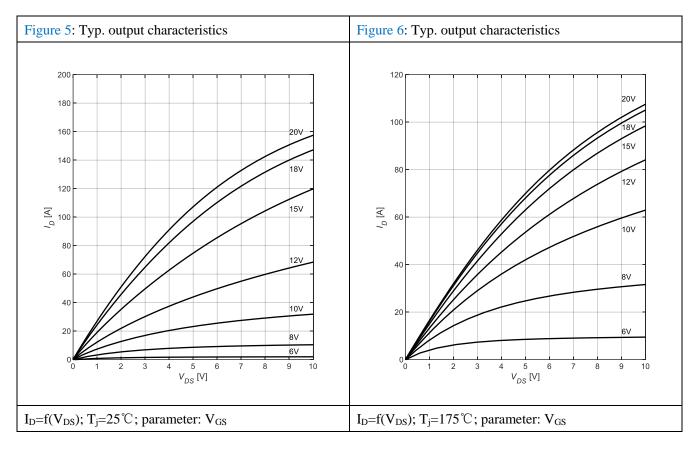
2.Thermal characteristics

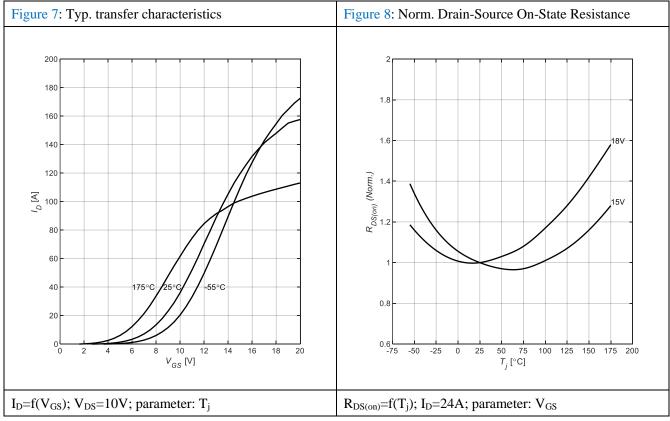
Parameter	Symbol	Value	Unit
Thermal resistance, junction-to-case	R _{thJC}	0.42	°C/W
Thermal resistance, junction-to-ambient	R _{thJA}	45	°C/W

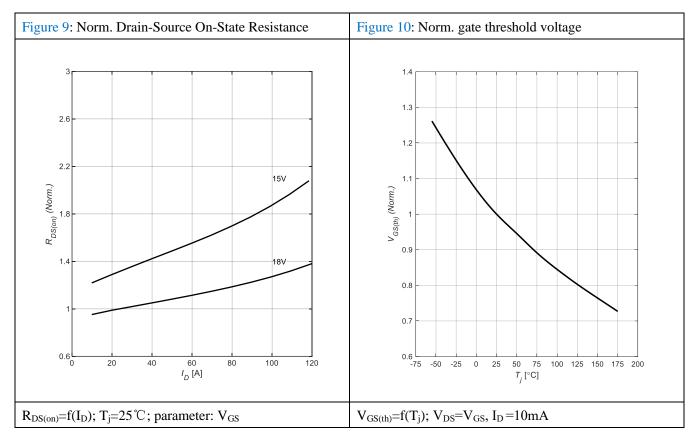


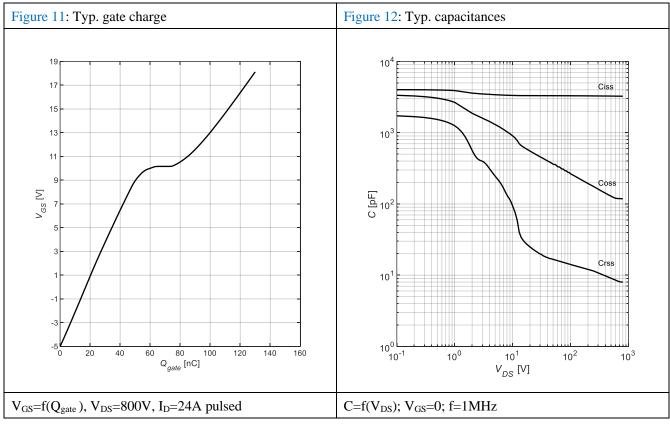

3.Electrical Characteristics (T_j =25°C unless otherwise specified)

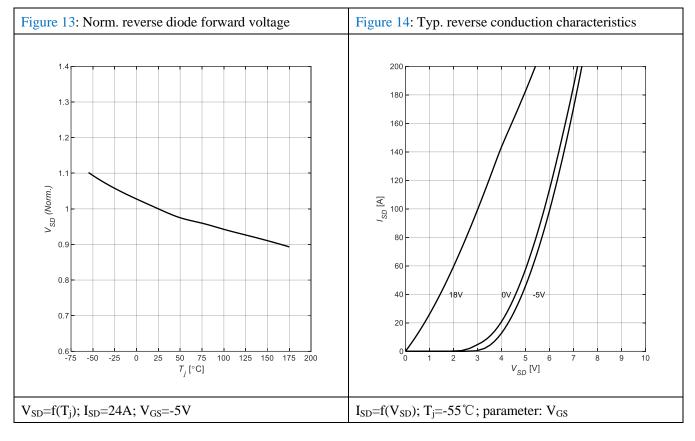
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Statistic Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0 V, I _D = 100 μA	1200	1500		V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 1200 V, V _{GS} = 0 V		1	10	μA
Oata Oannaal I O	I _{GSSF}	V _{GS} = 22 V, V _{DS} = 0 V			100	nA
Gate-Source Leakage Current	I _{GSSR}	V _{GS} = -10 V, V _{DS} = 0 V			-100	nA
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 10 \text{ mA}$	2.1	2.8	3.5	V
		V _{GS} = 18 V, I _D = 24 A		40	50	
		V _{GS} = 18 V, I _D = 24 A, T _j =150 °C		55		
01 11 10 11 10 10 10 11	5	V _{GS} = 18 V, I _D = 24 A, T _j =175 °C		60		_
Static Drain-Source On-Resistance	R _{DS(on)}	V _{GS} = 15 V, I _D = 24 A		55	70	mΩ
		V _{GS} = 15 V, I _D = 24 A, T _j =150 °C		65		
		V _{GS} = 15 V, I _D = 24 A, T _j =175 °C		70		
Gate Resistance	R _G	f = 1 MHz,open drain		3		Ω
Dynamic Characteristics			•		•	•
Input Capacitance	C _{ISS}			3250		
Output Capacitance	Coss			120		рF
Reverse Transfer Capacitance	C _{RSS}	f = 1 MHz		9		
Gate to Source Charge	Q_{gs}	V _{DS} = 800 V		53		
Gate to Drain Charge	Q _{gd} V _{GS} = -5 to 18 V			27		nC
Gate Charge Total	Qg	I _D = 24 A		128		1
Switching Characteristics			•		•	
Turn-on delay time	T _{d(on)}			20		
Rise time	Tr]		25		
Turn-off delay time	$T_{d(off)}$	$V_{DD} = 800 \text{ V}, I_D = 24 \text{ A},$		30		ns
Fall time	T _f	$R_G = 2.4 \Omega$, $V_{GS} = -5/+18 V$		12		
Turn-on switching energy	E _{on}	1		275		
Turn-off switching energy	E _{off}]		60		μJ
Reverse Diode Characteristics			•		•	
Diada Famuand Valtaria	V _{SD}	V _{GS} = -5 V, I _{SD} = 24 A		3.6		
Diode Forward Voltage		V _{GS} = -5 V, I _{SD} = 24 A, Tj=175 °C		3.3		V
Reverse Recovery Time	t _{rr}	V 000 V I 01 1		23		ns
Reverse Recovery Charge	Q _{rr}	V _R = 800 V, I _F = 24 A, di/dt =1000 A/µs		130		nC
Peak Reverse Recovery Current	I _{rrm}	- αι/αι – 1000 <i>π</i> /μο		12		Α

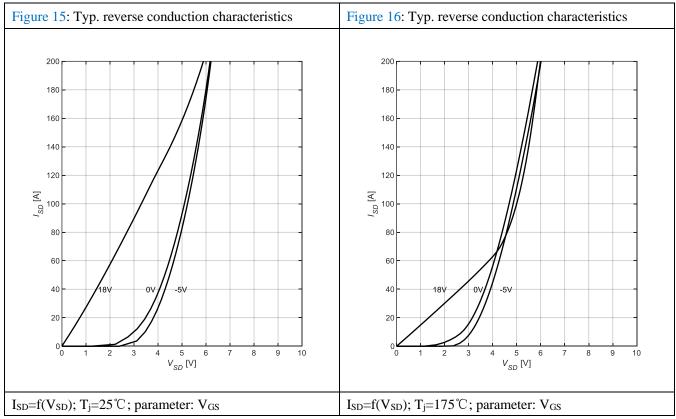


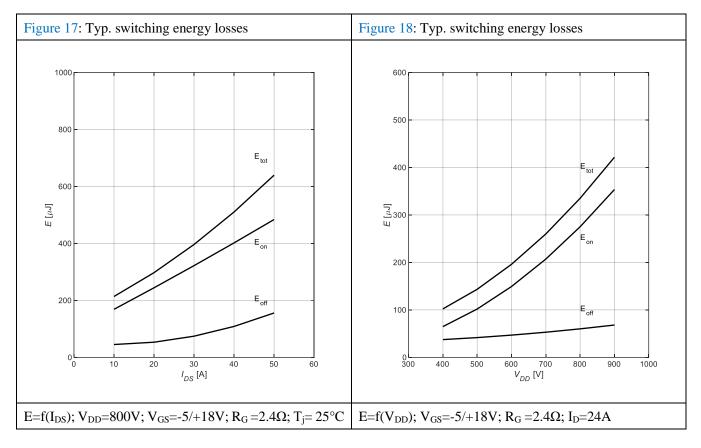

4. Electrical characteristic curves

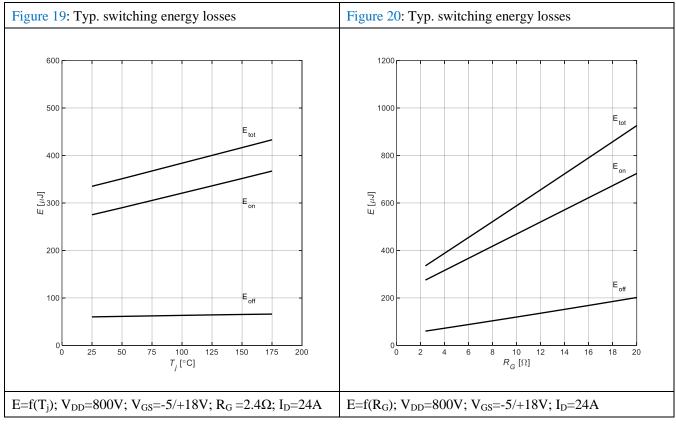


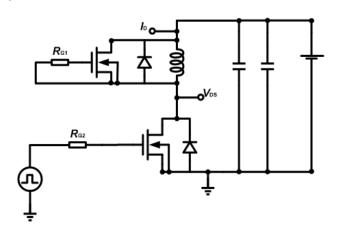


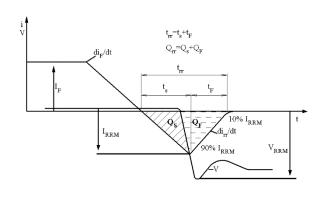


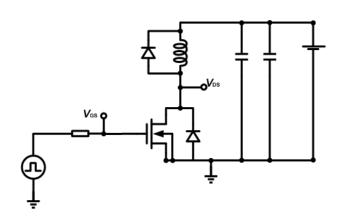


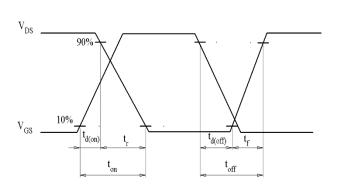


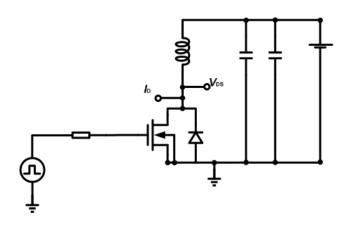


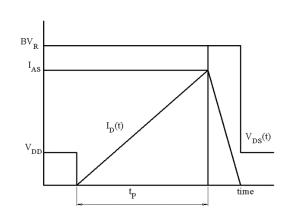


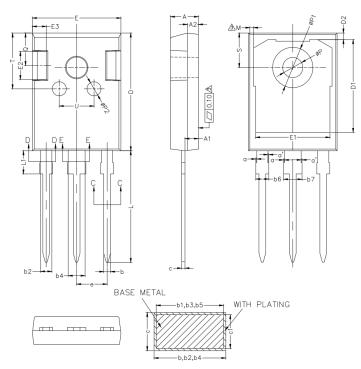



5.Test Circuits


1) Test circuit and waveform for diode characteristics




2) Switch time test circuit


3) Unclaimed inductive switching test circuit & waveforms

6. Package outline dimensions

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
а	0	_	0.15
a'	0	_	0.15
b	1.16	-	1.26
b1	1.15	1.2	1.22
b2	1.96	_	2.06
b3	1.95	2.00	2.02
b4	2.96	_	3.06
b5	2.95	3.00	3.02
b6	_	_	2.25
b7	_	_	3.25
С	0.59	_	0.66
c1	0.58	0.60	0.62
D	20.90	21.00	21.10
D1	16.25	16.55	16.85
D2	1.05	1.20	1.35
Е	15.70	15.80	15.90
E1	13.10	13.30	13.50
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	5.34	5.44	5.54
L	19.80	19.92	20.10
L1	3.95	4.13	4.30
М	0.35	-	0.95
Р	3.50	3.60	3.70
P1	7.00	_	7.40
P2 Q S T	2.40	2.50	2.60
Q	5.60	_	6.00
S	6.05	6.15	6.25
Т	9.80	_	10.20
U	6.00	_	6.40

7. Revision History

Revision	Description	Date
1.0	Initial version	2023/12/06

IMPORTANT NOTICE

LXP SEMI reserves the right to make changes without further notice to any products or specifications herein. You are solely responsible for your use of LXP SEMI's products and applications, and for the safety thereof. You shall comply with all laws, regulations and requirements related to LXP SEMI's products and applications, although information or support related to any application may still be provided by LXP SEMI.

The resources are intended only for skilled developers designing with LXP SEMI's products. LXP SEMI reserves the rights to make corrections, modifications, enhancements, improvements or other changes to the products and services provided. LXP SEMI authorizes you to use these resources exclusively for the development of relevant applications designed to integrate LXP SEMI's products. Using these resources for any other purpose, or any unauthorized reproduction or display of these resources is strictly prohibited. LXP SEMI shall not be liable for any claims, damages, costs, losses or liabilities arising out of the use of these resources.

For further information on applications, products and technologies, please contact LXP SEMI office.

Shanghai Lanxin Power Semiconductor Co., Ltd

Room 302, Building 1, No.515 HuanKe Road, Pudong New Area, Shanghai

Tel1: 13341860056 Tel2: 19921018496