

40mΩ, 650V, Super Junction N-Channel Power MOSFET

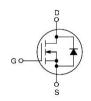
Description

The LXP SEMI LX1S040N065NB is a high voltage power MOSFET, fabricated using advanced super junction technology.

The resulting device has extremely low on resistance, low gate charge and fast switching time, making it especially suitable for applications which require superior power density and outstanding efficiency.

The LX1S040N065NB break down voltage is 650V and it has a high rugged avalanche characteristic. The LX1S040N065NB is available in TO-247-3 package.

Key Features


- Ultra Low $R_{DS(on)} = 33m\Omega$ @ $V_{GS} = 10V$.
- Low Gate Charge, Q_q=170nC typ.
- · Fast switching capability
- Robust design with better EAS performance
- EMI Improved
- Fast-Recovery Body Diode

Applications

- Telecom Power
- EV Charger
- LED Lighting

Key performance

Parameter	Value	Unit
V _{DS(Tj=25°C)}	650	V
R _{DS(on), max(Tj=25°C)}	40	mΩ
R _{DS(on), typic(Tj=25°C, ID=35 A)}	33	mΩ
I _{D(Tj=25°C)}	70	А
Qg, typic	170	nC
Q _{rr, typic}	3.3	μC
t _{rr, typic}	200	ns
$T_{j, max}$	150	°C

TO-247-3

Package Feature

Order code	Marking	Package	Packing
LX1S040N065NB	LX1S040N065NB-W	TO-247-3PIN	Tube

1.Maximum Ratings (Tj=25°C unless otherwise specified)

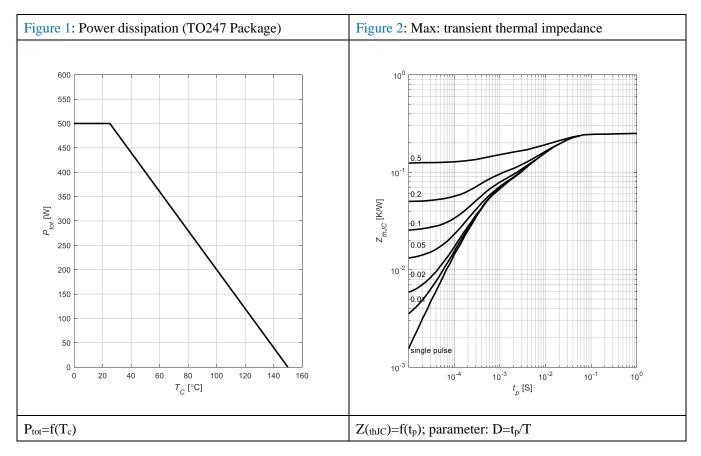
Parameter		Symbol	Rating	Unit
Drain-Source Voltage		V_{DSS}	650	V
Gate-Source Voltage		V _{GSS}	±30	V
Continuous Dusin Comment	T _C =25°C	,	70	^
Continuous Drain Current	T _C =100°C	I _D	45	_ A
Pulsed Drain Current (Note 2)		I _{DM}	210	А
Avalanche Energy, Single Puls	Avalanche Energy, Single Pulse (Note 3)		2170	mJ
Avalanche Energy, Repetitive (Note 2)		E _{AR}	3.3	mJ
Avalanche Current, Repetitive (Note 2)		I _{AR}	13.8	А
Continuous Diode Forward Current		Is	70	Α
Diode Pulse Current		I _{S.pulse}	210	Α
MOSFET dv/dt Ruggedness, V _{DS} ≤400V		dv/dt	80	V/ns
Reverse diode dv/dt Ruggedness, V _{DS} ≤400V		dv/dt	50	V/ns
Power Dissipation (TO247 Package)		P _{tot}	500	W
Operating Temperature/ Storage Temperature		TJ	-55~150	°C

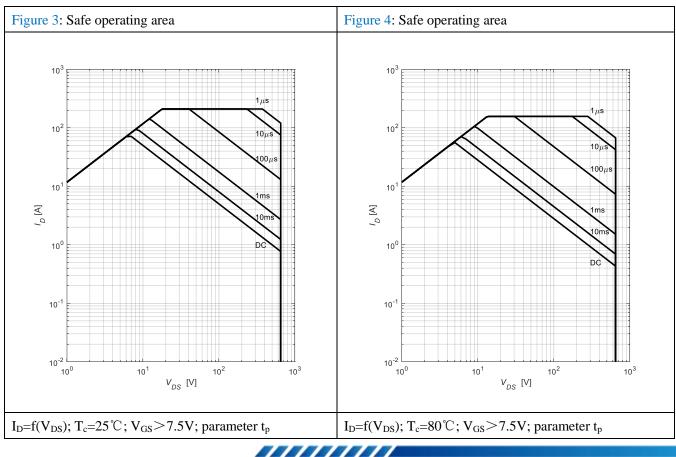
Note:

- 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. I_{AS} = 13.8A, V_{DD} = 50V, R_g = 25 Ω , Starting T_J = 25 $^{\circ}$ C

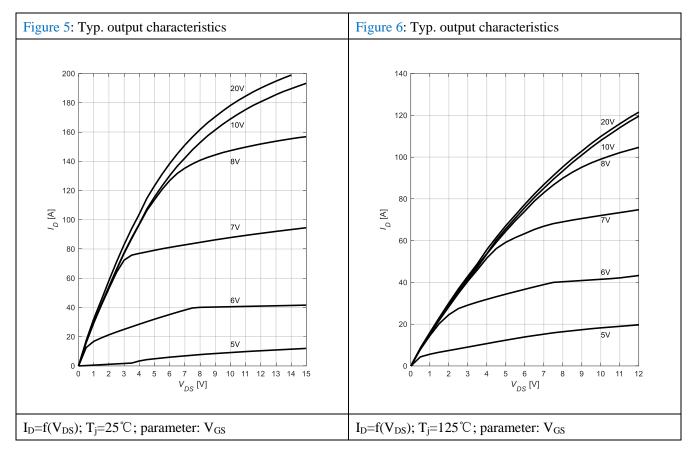
2. Thermal characteristics (TO247 Package)

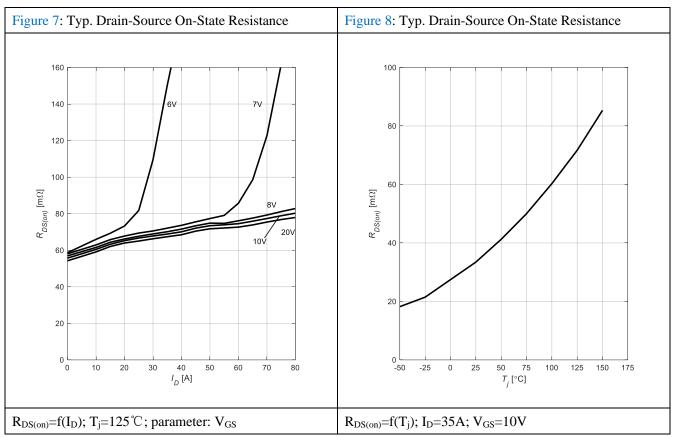
Parameter	Symbol	Max. Value	Unit
Thermal resistance, junction-to-case	R_{thJC}	0.25	°C/W
Thermal resistance, junction-to-ambient	R _{thJA}	62	°C/W

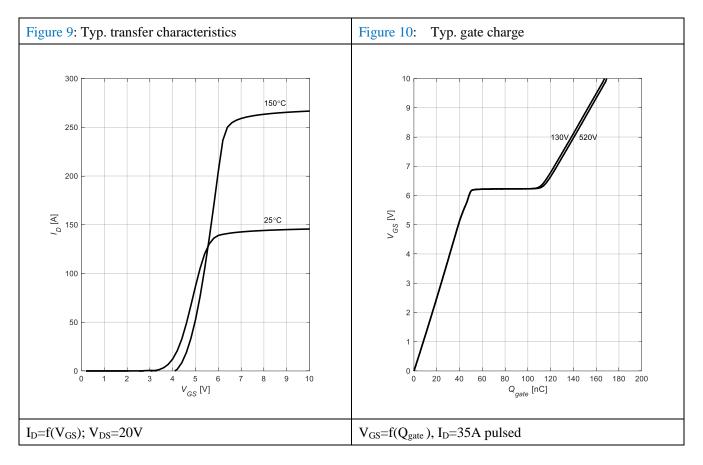


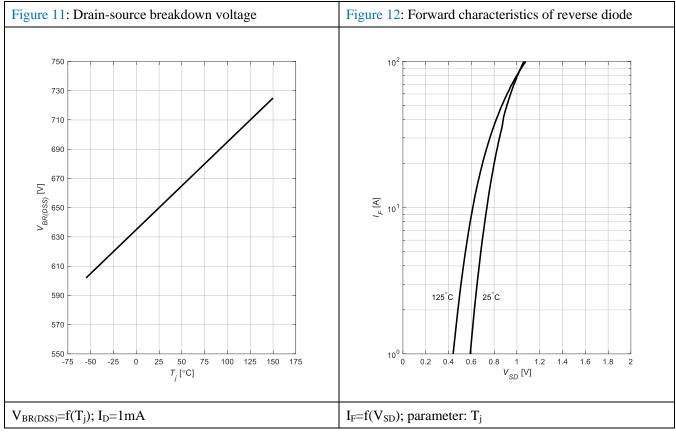

3.Electrical Characteristics (Tvj=25°C unless otherwise specified)

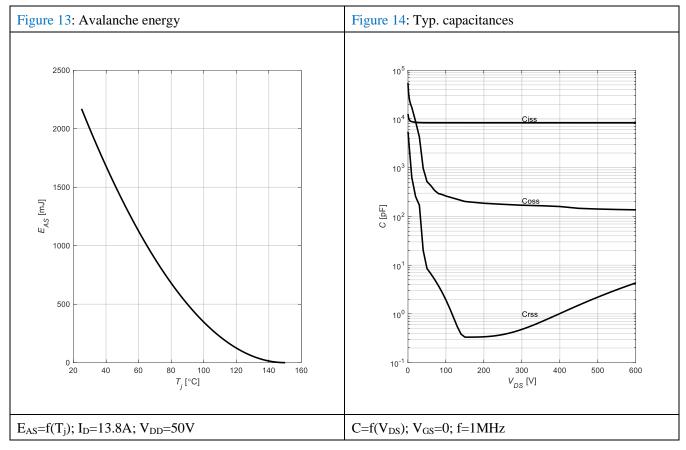
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Statistic Characteristics			•	-		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0 V, I _D = 250 μA	650			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 650 V, V _{GS} = 0 V			10	μA
	I _{GSSF}	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
Gate-Source Leakage Current	I _{GSSR}	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}$, $I_D = 3 \text{ mA}$	3.8	4.3	4.8	V
		V _{GS} = 10 V, I _D = 35 A		33	40	
Static Drain-Source On-Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 35 A T _j =125 °C		71		mΩ
Gate Resistance	R _G	f = 1 MHz,open drain		3.0		Ω
Dynamic Characteristics				I	<u> </u>	
Input Capacitance	C _{ISS}	V _{GS} = 0 V		8400		
Output Capacitance	Coss	V _{DS} = 100 V		280		pF
Reverse Transfer Capacitance	C _{RSS}	f = 1 MHz		2		
Gate to Source Charge	Q_{gs}	V _{DS} = 520V		50		
Gate to Drain Charge	Q_gd	V _{GS} = 0 to 10 V		60	nC	
Gate Charge Total	Qg	I _D = 35A		170		
Switching Characteristics			•	1		
Turn-on delay time	$T_{d(on)}$			304		
Rise time	Tr			37		
Turn-off delay time	$T_{d(off)}$	$V_{DD} = 400 \text{ V}, I_D = 35 \text{ A},$		364		ns
Fall time	T _f	$R_G = 10\Omega$, $V_{GS} = 0/10 \text{ V}$		13		
Turn-on switching energy	E _{on}			2.2		
Turn-off switching energy	E _{off}			1.0		mJ
Reverse Diode Characteristics			•	-		
Drain-Source Diode Forward		$V_{GS} = 0 \text{ V}, I_{SD} = 35 \text{ A}$		0.9		
Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{SD} = 35 \text{ A}$ $T_{j}=125 ^{\circ}\text{C}$		0.8		V
Reverse Recovery Time	t _{rr}	V 400 V 1 05 A		200		ns
Reverse Recovery Charge	Q _{rr}	$V_R = 400 \text{ V}, I_F = 35 \text{ A},$ - di/dt =150A/µs		3.3		μC
Peak Reverse Recovery Current	I _{rrm}	- ui/ut = 130A/μ5		28		Α

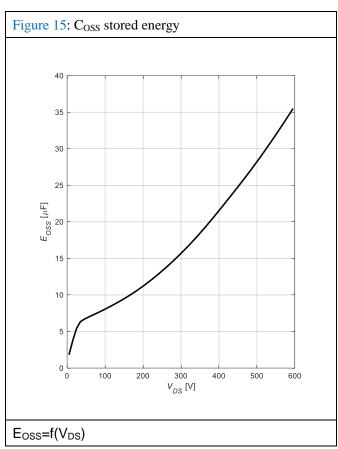


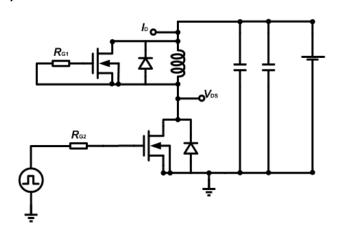

4. Electrical characteristic curves

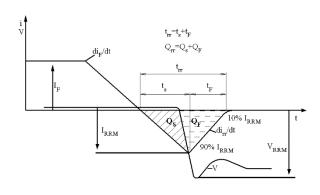


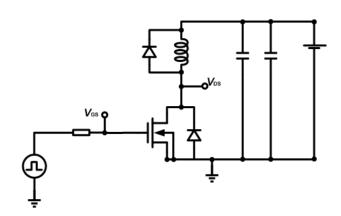


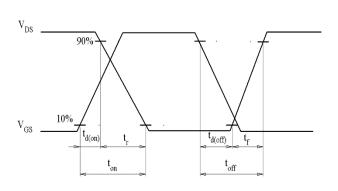


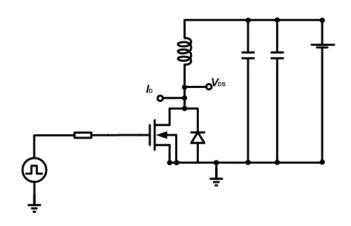


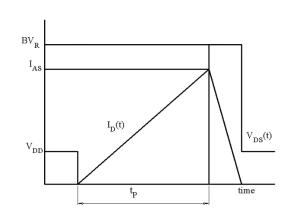




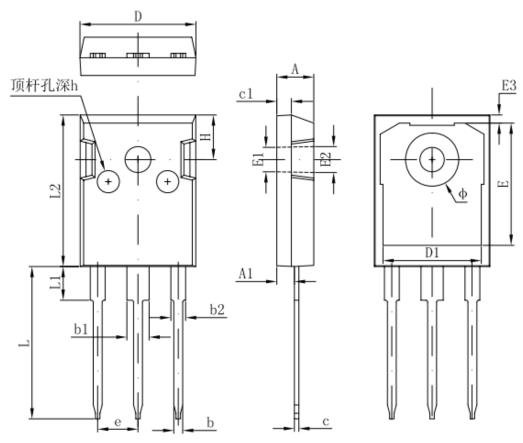

5.Test Circuits


1) Test circuit and waveform for diode characteristics




2) Switch time test circuit

3) Unclaimed inductive switching test circuit & waveforms



6.Package outline dimensions

TO-247A PACKAGE OUTLINE DIMENSIONS

Cumbal	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
Α	4.850	5.150	0.191	0.200
A1	2.200	2.600	0.087	0.102
b	1.000	1.400	0.039	0.055
b1	2.800	3.200	0.110	0.126
b2	1.800	2.200	0.071	0.087
С	0.500	0.700	0.020	0.028
c1	1.900	2.100	0.075	0.083
D	15.450	15.750	0.608	0.620
D1	13.110	13.410	0.516	0.528
E	16.400	16.700	0.646	0.657
E1	3.500 REF.		EF. 0.138 REF.	
E2	3.600	3.600 REF.		REF.
E3	0.900	1.250	0.035	0.049
L	20.320	20.720	0.800	0.816
L1	4.300	4.700	0.169	0.185
L2	20.300	20.600	0.799	0.811
Φ	7.100	7.300	0.280	0.287
е	5.450 TYP.		0.215	TYP.
Н	5.980	5.980 REF.		REF.
h	0.000	0.300	0.000	0.012

7. Revision History

Revision	Description	Date
1.0	Initial version	2023/07/14

IMPORTANT NOTICE

LXP SEMI reserves the right to make changes without further notice to any products or specifications herein. You are solely responsible for your use of LXP SEMI' products and applications, and for the safety thereof. You shall comply with all laws, regulations and requirements related to LXP SEMI's products and applications, although information or support related to any application may still be provided by LXP SEMI.

The resources are intended only for skilled developers designing with LXP SEMI' products. LXP SEMI reserves the rights to make corrections, modifications, enhancements, improvements or other changes to the products and services provided. LXP SEMI authorizes you to use these resources exclusively for the development of relevant applications designed to integrate LXP SEMI's products. Using these resources for any other purpose, or any unauthorized reproduction or display of these resources is strictly prohibited. LXP SEMI shall not be liable for any claims, damages, costs, losses or liabilities arising out of the use of these resources.

For further information on applications, products and technologies, please contact LXP SEMI office.

Shanghai Lanxin Power Semiconductor Co., Ltd

Room 302, Building 1, No.515 HuanKe Road, Pudong New Area, Shanghai

Tel1: 19921018496 Tel2: 13918019518
